Name:	Teacher:

Level 3 Chemistry

91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of	Demonstrate in-depth	Demonstrate comprehensive
thermochemical principles and	understanding of	understanding of
the properties of particles and	thermochemical principles and	thermochemical principles and
substances.	the properties of particles and	the properties of particles and
	substances.	substances

You should attempt ALL the questions in this booklet.

A periodic table is provided in the Resource Sheet.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

QUESTION ONE

(a) Complete the following table, using s, p, d notation.

Symbol	Electron configuration
Al ³⁺	
Со	
Fe ³⁺	

(b) Explain why a potassium ion is smaller than a potassium atom.

(c) The graph shows the first ionization energies for six successive elements in the Periodic Table. The letters used are not their symbols.

(i) Define the term **first ionization energy**.

(ii) Ionisation energies provide evidence for the arrangement of electrons in atoms.

Identify and justify which element (A - F) is potassium.

Question Two

(a) Chlorine, Cl and fluorine, F are both halogens. A molecule of ClF₃ can react with a molecule of AsF₅ as shown in the following equation.

$$\mathsf{CIF}_3 + \mathsf{AsF}_5 \rightarrow \mathsf{CIF}_2^+ + \mathsf{AsF}_6^-$$

Complete the following table.

	AsF₅	CIF ₂ ⁺
Lewis Diagram		
Name of shape		

Bromine also forms compounds with other halogens.

(b) The Lewis diagram for the bromine trifluoride molecule is shown below.

Would you expect BF_3 to be soluble in water?

Explain your answer in terms of the shape and polarity of BF₃.

(c) Fluorine reacts with hydrogen to form hydrogen fluoride (HF). The boiling points of fluorine and hydrogen fluoride are –188°C and 19.5°C respectively. Explain the difference in the boiling points of fluorine and hydrogen fluoride by comparing and contrasting the relative strengths of all the attractive forces involved between the molecules.

- (d) The following table shows the boiling points of some straight-chain alkanes.

	CH4	C_2H_6	C_3H_8	C_4H_{10}	C_5H_{12}
Boiling point /°C	-162	-88	-42	-1	36

(i) The following compound is an isomer of one of the alkanes in the table. It has a boiling point of 9.5° C.

Discuss why the boiling point of this compound is lower than that of its straight-chain isomer.

(ii) Both C_3H_8 and C_4H_{10} can be liquefied and used as fuels for camping stoves. Suggest, with a reason, which of these two fuels is liquefied more easily.

QUESTION THREE

Cracking is the process whereby organic molecules are broken down into simpler molecules

The equation for a cracking reaction of butane is

 $C_4H_{10}(g) \rightarrow CH_4(g) + C_3H_6(g)$

(a) Use the following standard enthalpy changes of combustion to calculate the enthalpy change of this cracking reaction.

 $\Delta_{c}H^{o}(CH_{4}(g)) = -890 \text{ kJ mol}^{-1}$ $\Delta_{c}H^{o}(C_{4}H_{10}(g)) = -2877 \text{ kJ mol}^{-1}$ $\Delta_{c}H^{o}(C_{3}H_{6}(g)) = -2058 \text{ kJ mol}^{-1}$

Make sure to:

- show your method.
- include a sign and units in your answer.

Propane is sold in small cylinders. It is used as a fuel in camping stoves. The enthalpy change of combustion of propane can be measured by experiment using one of these cylinders.

A known mass of propane is burned to heat a container of water. The temperature rise of the water is measured.

If 0.328 g of propane is burned, the temperature of 100 g water increases from 19.5 °C to 43.0 °C.

(b) (i) Using these results, calculate the experimental value for $\Delta_c H(C_3 H_8(g))$. The specific heat capacity of water is 4.18 J g⁻¹ °C⁻¹. $M(C_3 H_8) = 44.0 \text{ g mol}^{-1}$.

(ii) The results of this experiment are inaccurate due to heat loss.
Suggest **one** other source of error, other than measurement errors and limitations of the equipment.

(c) Calcium chloride, CaCl₂ can be formed by burning calcium metal in chlorine gas.

Ca(s) + Cl₂(g) → CaCl₂(s);
$$\Delta_r H^o = -796 \text{ kJ mol}^{-1}$$

 $\Delta S^o_{\text{system}} = -101.8 \text{ J mol}^{-1} \text{ K}^{-1}$
 $\Delta S^o_{\text{surroundings}} = +2670 \text{ J mol}^{-1} \text{ K}^{-1}$

(i) Explain fully why the standard entropy change of the system ΔS^{o}_{system} has a negative value.

(ii) Explain fully why you would expect the standard entropy change of the surroundings $\Delta S^{o}_{surroundings}$, to have a positive value.

(iii) The total entropy change, ΔS° total can be calculated by using the following equation:

$$\Delta S^{\rm o}_{\rm total} = \Delta S^{\rm o}_{\rm surroundings} + \Delta S^{\rm o}_{\rm system}$$

The total entropy change for this reaction is:

What does ΔS^{o}_{total} tell you about the spontaneity of this reaction?

Extra paper if required. Write the question number(s) if applicable

NB2S 2017

Any part of this publication may be reproduced by any means without needing any prior permission! Go for it!